Osservazione con il telescopio

 

Strumenti di osservazione

 



I telescopi per uso amatoriale si dividono in due tipi principali: rifrattori e riflettori. Tra i due tipi vi sono evidenti differenze costruttive anche se le prestazioni sono molto simili. La principale differenza consiste nel fatto che, nei rifrattori, l’ obiettivo è costituito da lenti mentre nei riflettori è costituito da uno specchio opportunatamente trattato.

 

Telescopi rifrattori

I rifrattori sono i primi telescopi ad essere stati inventati; hanno l'aspetto tipico dei cannocchiali, ossia un lungo tubo che si allarga progressivamente partendo dall'oculare fino all'apertura. Sull'estremità frontale è disposto un doppietto, formato da due vetri ottici (lenti) opportunamente lavorati, chiamato obiettivo, che ha la funzione di raccogliere e di focalizzare la luce. L'obiettivo svolge sostanzialmente la funzione di prisma: scompone e ricompone la radiazione luminosa in un determinato punto chiamato fuoco posto sul piano ottico dello strumento ad una distanza F detta lunghezza focale strumentale (F). L’ immagine che ne deriva è una immagine reale piccola e capovolta, che per poter essere osservata dovrà essere ingrandita come vedremo da una particolare lente detta oculare. rifrattore 1 I parametri fondamentali della lente obiettivo sono:

  • Il diametro o apertura dello strumento. Indica la capacità di raccolta della luce (cioè l'aumento della luminosità) e il potere risolutivo. Maggiore è il diametro dell'obiettivo, maggiore è la quantità di luce raccolta con una relazione rifrattore 2 direttamente proporzionale al quadrato della superficie secondo la formula Q = D², dove Q è la quantità di luce raccolta e D è il diametro. Un obiettivo con diametro doppio rispetto ad un altro ha quindi un potere di raccolta luminosa quattro volte superiore.
  • Il potere risolutivo. Dalla dimensione del diametro dell’ obbiettivo dipende direttamente anche il potere risolutivo, che è la capacità di separazione angolare, ovvero la capacità di distinguere come separati dei punti tra loro vicini. Il potere risolutivo teorico aumenta all'aumentare del diametro, anche se è da rilevare che le condizioni atmosferiche (in particolare il seeing) possono abbassare, anche sensibilmente, la risoluzione di cui sono capaci gli strumenti oltre un certo diametro (in genere, dai 150 mm in su). Il potere risolutivo è una misura angolare, normalmente espressa in secondi d' arco, e più è piccola più piccoli sono i dettagli che è possibile distinguere. Il massimo di separazione angolare teorica di uno strumento, è approssimato dalla formula       S = 120/D , dove “S” è la misura angolare in secondi d'arco dei particolari separabili e “D” è il diametro dell'obiettivo in millimetri.
  • La lunghezza focale. Indica la distanza del fuoco dall'obiettivo, e determina anche il rapporto focale, ovvero la luminosità intrinseca del telescopio. Il rapporto focale è dato dal rapporto tra la lunghezza focale dell’ obiettivo ed il suo diametro secondo la formula F = f /D, dove F è il rapporto focale, f la lunghezza focale e D il diametro dell'obiettivo. Questo rapporto, comunemente definito luminosità, è un parametro assoluto che caratterizza il sistema ottico. Minore è il rapporto focale e maggiore è la luminosità dello strumento. Di contro però un basso rapporto focale determina anche alcuni problemi di natura ottica come quelli della coma e di altre aberrazioni in questo caso è necessaria l'applicazione di costose tecniche di correzione.

L' oculare ha principalmente lo scopo di ingrandir>L’ oculare ha principalmente lo scopo di ingrandire l’ immagine creata dall’ obiettivo nel punto focale. I parametri fondamentali della lente oculare sono:

  • La sua lunghezza focale. Ogni oculare ha una propria lunghezza focale, come l'obiettivo del telescopio. La combinazione di un oculare con una determinata lunghezza focale ad un obiettivo con la propria lunghezza focale determina l'ingrandimento complessivo del sistema, secondo la relazione I = f’/ f’’ , dove I è l'ingrandimento, f’ è la focale dell'obiettivo e f’’ è la focale dell'oculare. Diminuendo la focale dell'oculare aumentano gli ingrandimenti ottenuti e perciò l'ingrandimento non dipende dal diametro dell'obiettivo, ma solo dalla sua lunghezza focale. In realtà esiste un limite fisico al massimo ingrandimento realmente utilizzabile perché aumentando la scala a cui viene vista l'immagine fornita dall'obiettivo, questa si fa via via meno luminosa e meno nitida.
  • L'estrazione pupillare o pupilla d’ uscita. Rappresenta la distanza alla quale deve essere posto l'occhio dell'osservatore dall'oculare per vedere l'intero campo di vista a fuoco. Dipende dalle caratteristiche costruttive dell'oculare stesso, ed è direttamente proporzionale alla sua lunghezza focale, per cui si riduce al crescere degli ingrandimenti totali.
  • Il campo di vista. Esistono due concetti legati tra loro, ovvero il campo reale ed il campo apparente. Il campo reale è la dimensione angolare della porzione di cielo visibile nell'oculare applicato al telescopio. Il campo apparente è invece il diametro angolare, in gradi, del cerchio di luce visibile dall'occhio, ed è fissato dalle caratteristiche costruttive dell'oculare stesso, indipendentemente dal campo reale. Il tubo ottico, oltre ad assolvere alla funzione di sostegno dell'obiettivo e dell'oculare evita, dal momento che è chiuso ai due lati, che si verifichi il degrado dell'immagine dovuto ai moti interni dell'aria.

Durante le osservazioni la posizione del piano focale rispetto all'obiettivo può cambiare per effetto di fenomeni di dilatazione termica. Per ovviare a questo inconveniente tra oculare e punto focale viene interposto un focheggiatore costituito da due tubi di ottone che scorrono l'uno dentro l'altro. Il tubo esterno è fissato al telescopio, quello interno all’ oculare. Lo scorrimento del tubo interno rispetto all'altro, regolato da una cremagliera, consente di facilitare la messa a fuoco dell'immagine. Un grave problema che affligge telescopi rifrattori, ed in diversa misura tutti i sistemi ottici a lenti, è l’aberrazione cromatica. Si tratta di un difetto nella formazione dell'immagine dovuta al diverso valore di rifrazione delle diverse lunghezze d'onda che compongono la luce che attraversa un mezzo ottico. Questo si traduce in immagini che presentano ai bordi degli aloni colorati. L’inconveniente si riduce notevolmente usando lenti costituite da più materiali ognuno con diversa dispersione, in modo che le differenze tra gli angoli di rifrazione per la stessa lunghezza d'onda si annullino reciprocamente. Un sistema molto usato è il doppietto acromatico costituito da vetro Flint e Crown. I telescopi rifrattori forniscono immagini di alta qualità, ma risultano essere molto costosi e pure abbastanza rifrattore 3ingombranti, motivo per cui i modelli più diffusi sono di dimensioni relativamente ridotte; in genere se si desidera avere un'elevata capacità di risoluzione, ossia un maggiore ingrandimento, ci si orienta maggiormente sui telescopi riflettori. I telescopi rifrattori sono l'ideale per l'osservazione dei pianeti: la grande nitidezza caratteristica delle osservazioni condotte col rifrattore permette di osservare molti dettagli dell'atmosfera dei giganti gassosi come Giove e Saturno, nonché varie sfumature visibili sulla Luna e sulla superficie del pianeta Marte. Mediamente un telescopio rifrattore con un 'apertura di 90-100mm di diametro (i modelli più diffusi) consentono di individuare stelle fino alla magnitudine apparente 11, consentendo così di risolvere in singole stelle una buona parte degli ammassi aperti e di riconoscere alcuni particolari delle nebulose più brillanti. Gli ammassi globulari invece continuano ad apparire nebulosi e apparentemente privi di stelle.

 

Telescopi riflettori

Il telescopio riflettore raccoglie la luce per mezzo di uno specchio parabolico fissato all'estremità opposta all'apertura, concentrandola sul fuoco della parabola, dove viene riflessa da un secondo specchio e indirizzata verso l'oculare. Questo tipo di telescopio è molto meno costoso del precedente e può essere costruito con molta più facilità, al punto che molti astrofili esperti si costruiscono da soli il loro telescopio su misura. A causa della grande potenza che questi strumenti possono raggiungere, che ha come conseguenza il fatto che si può osservare un piccolo campo molto ingrandito, sopra il tubo sono spesso montati dei "cercatori", consistenti in una sorta di cannocchiale a basso ingrandimento, che consente di rintracciare un oggetto nel cielo prendendo come riferimento l’ oggetto stesso, se facilmente visibile, o un altro oggetto vicino più visibile. La configurazione più diffusa, nei telescopi riflettori, è quella detta Newtoniana (immagine sotto); consiste in uno imagespecchio primario parabolico che concentra il fascio ottico in un punto focale posto sullo stesso asse ottico dello strumento. Poco prima del fuoco è posto un secondo specchio ellittico (piano), inclinato di 45 gradi, che devia il fascio ottico a lato del tubo di supporto, dove è posizionato il focheggiatore, che serve per regolare l'oculare, che vi si inserisce all'interno. Lo specchio secondario è mantenuto al centro del fascio ottico da una struttura a raggi denominata in gergo crociera o spider (ragno), il quale deve essere il meno intrusivo possibile per non causare luci diffuse. Esistono telescopi a configurazione newtoniana di svariate dimensioni, dai più piccoli 90mm (un classico modello fra i più diffusi è il 114mm) fino ai 300mm ed oltre; fra gli oculari più diffusi vi sono quelli a 25x e 38x. imageUna diversa configurazione è quella dello Schmidt-Cassegrain (immagine sotto), che a differenza del imageprecedente contiene uno specchio primario forato al centro; la luce viene sempre concentrata su un secondo specchio posto al centro del tubo, che però non è disposto a 45° (come nel Newtoniano) ma è perpendicolare alla lunghezza del tubo stesso, riflettendo così la luce verso il foro dello specchio primario, dove si trovano il focheggiatore e l'oculare. Davanti all'apertura è posta una lastra di Schmidt di correzione. La configurazione Schmidt-Cassegrain consente di aumentare la lunghezza focale e contemporaneamente ridurre ulteriormente la lunghezza del tubo, cosicché anche strumenti molto potenti posseggano dimensioni relativamente contenute. Un telescopio Schmidt-Cassegrain ha lo svantaggio della curvatura di campo e perciò non si presta ad applicazioni fotografiche in quanto le foto appariranno sfocate lungo i margini. La altre aberrazioni sono così ridotte che restano limitate ai dischi di diffrazione e non danno nell'occhio. Sono molto apprezzati dagli astrofili perché compatti e facili da trasportare.

image

Esistono anche alcune varianti di questi due sistemi principali. La possibilità di osservazione varia molto a seconda del modello utilizzato. Con i modelli più classici per gli astrofili alle prime armi, come gli 80mm o i 114mm, si possono osservare senza alcuna difficoltà gli anelli di Saturno o, con un oculare potente, la famosa Macchia Rossa sulla superficie di Giove; la magnitudine limite per questo tipo di strumenti generalmente è la 12 o la 13, che consente di risolvere in stelle la gran parte degli ammassi aperti conosciuti e di intravedere qualche componente stellare degli ammassi globulari più luminosi. Tramite la visione distolta si possono inoltre osservare un discreto numero di nebulose, che comunque appaiono molto più in risalto nelle fotografie a lunga posa. Strumenti maggiori (150-200mm) permettono di rilevare stelle fino alla quattordicesima magnitudine; strumenti così potenti (ed anche di più) sono però sconsigliabili per chi inizia appena a riconoscere stelle e costellazioni, dato che sono pensati e utilizzati da astrofili con una certa esperienza.
Nei telescopi a riflessione per lo specchio primario viene utilizzato un vetro speciale, definito ottico in quanto deve risponde ad alcuni requisiti fondamentali come facilità di lavorazione, bassissimo coefficiente di dilatazione termica, omogeneità e purezza dell' impasto. La superficie del vetro, viene prima levigata a forma di una figura geometrica approssimabile alla parabola o all'iperbole a seconda delle esigenze, e successivamente vi viene depositato, tramite un particolare procedimento denominato alluminatura e praticato in camere a vuoto spinto, un sottilissimo strato di alluminio che lo rende riflettente ed idoneo a raccogliere la radiazione luminosa. Costruttivamente lo specchio può essere realizzato monoblocco (unico blocco di vetro) oppure a nido d'ape ovvero un mosaico di vetri singoli al fine di alleggerire ed irrobustire il pezzo e rendere minimo il tempo di attesa per la stabilizzazione termica.
Lo sviluppo dei telescopi moderni, si è basato in gran parte sulla computerizzazione dei movimenti e sul controllo delle deformazioni delle parti ottiche e meccaniche. I primi specchi erano di metallo e quindi cambiavano facilmente di dimensioni per effetto della dilatazione termica. Ovviamente, anche la focale, e quindi l'ingrandimento, cambiava notevolmente e anche imprevedibilmente. Solo nel 1865, con l'invenzione del procedimento chimico di J. von Liebig per metallizzare il vetro, si costruirono i primi specchi di vetro metallizzati. Successivamente, in anni relativamente recenti, gli specchi vennero ricoperti di una sottile pellicola metallica riflettente mediante i procedimenti di evaporazione del metallo sotto vuoto. Per diverso tempo il miglior materiale per la costruzione dei vetri fu il quarzo e il pyrex; attualmente si usano tre tipi di materiali per i quali il coefficiente di dilatazione termica è tanto basso da potersi considerare praticamente nullo: l'ULE (Ultra Low Expansion), il CerVit (Ceramica Vetrificata) e lo Zerodur, con cui sono stati costruiti i 4 specchi da 8,2 m di diametro ciascuno del Very Large Telescope, il grandissimo telescopio europeo (VLT, http://www.eso.org), e anche lo specchio da 3.58 metri del Telescopio Nazionale Galileo, il maggiore telescopio italiano, situato alle Canarie (TNG, http://www.tng.iac.es). Le dimensioni raggiunte dagli specchi principali dei telescopi sono probabilmente al limite delle possibilità tecnologiche attuali, anche se sono stati proposti specchi di 25 m. di diametro. Il costo di un tale specchio sarebbe però proibitivo. L'alternativa alla costruzione di un unico specchio di 25 m. lavorato alla perfezione ottica consiste nell'utilizzare una serie di specchi più piccoli.

 

Ecco una lista dei più gradi telescopi riflettori del mondo :

 

Nome Diametro Tipo di specchio Nazionalità Osservatorio Anno di costruzione
Large Binocular Telescope (LBT) 2×8,4 = 11,8 m 2 singoli USA Italia Germania Osservatorio internazionale del monte Graham (Arizona) 2007
Gran Telescopio Canarias (GTC) 10,4 m Mosaico Spagna Messico USA Osservatorio del Roque de Los Muchachos Isole (Canarie) 2006
Keck 1 10 m Mosaico USA Osservatorio di Mauna Kea (Hawaii) 1993
Keck 2 10 m Mosaico USA Osservatorio di Mauna Kea (Hawaii) 1996
Southern African Large Telescope (SALT) 9,5 m Mosaico Sudafrica USA UK Germania Polonia Nuova-Zelanda Osservatorio Astronomico del Sudafrica (Sudafrica) 2005
Hobby-Eberly Telescope (HET) 9,2 m Mosaico USA Germania Osservatorio McDonald (Texas) 1997
Subaru (NLT) 8,3 m Singolo Giappone Osservatorio di Mauna Kea (Hawaii) 1999
VLT 1 (Antu) 8,2 m Singolo Paesi ESO + Cile Osservatorio del Paranal (Cile) 1998
VLT 2 (Kueyen) 8,2 m Singolo Paesi ESO + Cile Osservatorio del Paranal (Cile) 1999
VLT 3 (Melipal) 8,2 m Singolo Paesi ESO + Cile Osservatorio del Paranal (Cile) 2000
VLT 4 (Yepun) 8,2 m Singolo Paesi ESO + Cile Osservatorio del Paranal (Cile) 2001
Gemini North 8,1 m Singolo USA UK Canada Cile Australia Argentina Brasile Osservatorio di Mauna Kea (Hawaii) 1999
Gemini South 8,1 m Singolo USA UK Canada Cile Australia Argentina Brasile Cerro Pachón (Cile) 2001
Multiple/Magnum Mirror Telescope (MMT) 6,5 m Prima a sei 6 unità, poi convertito a specchio singolo USA Osservatorio Fred Lawrence Whipple (Arizona) 1987
2002
Magellan 1 (Walter Baade) 6,5 m Singolo USA Osservatorio di Las Campanas (Cile) 2000
Magellan 2 (Landon Clay) 6,5 m Singolo USA Osservatorio di Las Campanas (Cile) 2002
BTA-6 6 m Singolo Russia Zelenchukskaya Caucaso 1976
Large Zenith Telescope (LZT) 6 m Singolo Canada, Francia Maple Ridge (Columbia Britannica) 2003
Hale Telescope 5 m Singolo USA Osservatorio di Monte Palomar (California) 1948
William Herschel Telescope 4,2 m Singolo UK Paesi Bassi Spagna Osservatorio del Roque de Los Muchachos (Isole Canarie) 1987
SOAR 4,2 m Singolo USA,Brasile Cerro Pachón (Cile) 2002